
Multi-Core Processor Memory Contention Benchmark Analysis Case Study

Tyler Simon, Computer Sciences Corp.
James McGalliard, FEDSIM

Abstract:

Multi-core processors dominate current mainframe, server, and high performance computing
(HPC) systems. This paper provides synthetic kernel and natural benchmark results from an
HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of
multi-core (dual- and quad-core) vs_ single core processor systems. Analysis of processor
design, application source code, and synthetic and natural test results all indicate that multi-core
processors can suffer from significant memory subsystem contention compared to similar single-
core processors.

1. INTRODUCTION

Moore's Law predicts that the performance of central
processing units (CPUs) doubles approximately every
18 months. This prediction has held true for about 40
years'. Among the many advances in CPU design
and construction, the single most important factor
fulfilling Moore's prediction is manufacturers' ability to
fabricate chips with narrower circuit paths, pack
transistors more densely and allow the processor
clock to speed up. Until recently.

Recent generation microprocessors suffer
increasingly from transistor current leakage due to the
narrow width of circuit paths and the insulation
between them. As leakage increases, processors
draw more power and generate more heat, to the
point that significant further reductions in chip size and
increases in clock speed may not be feasible with
current technology.

Manufacturers have turned to multiple-core
processors in response. With two, four or more CPU
cores packed on a single chip, the chip's theoretical
peak performance continues to follow the common
interpretation of Moore's prediction. However, for
many real workloads, when essentially the same
memory subsystem has to support twice or four times
as many instructions per second as previously,
memory becomes a significant bottleneck and peak
performance is not achievable.

This paper, based on synthetic kernel and natural
benchmark tests run primarily on a highly parallel
Linux cluster supercomputer located in the NASA

I This is the common interpretation of Moore's Law, which actually
states that the number of transistors on a given integrated circuit will
double approximately every two years [Moore].

Center for Computational Sciences 2 (NCCS) at the
Goddard Space Flight Center in Greenbelt, Maryland,
illustrates the phenomenon of multi-core processor
memory contention.

The NCCS User Services Group (USG) administers
accounts and allocations, runs the Help Desk and
trouble ticketing and monitors system status.
Software engineering and technical assistance is
generally provided by the Software Integration and
Visualization Office (SIVO). These benchmark results
from USG and SIVO technical staff are intended to
help users understand the behavior of multi-core
systems and optimize their codes.

The paper is structured as follows:

• Section 1 describes the NCCS environment,
major workloads and HPC systems.

• Section 2 discusses recent generation multi-core
processor design.

• Section 3 provides synthetic kernel and natural
application benchmark test results.

• Section 4 discusses some results from other
studies.

• Section 5 provides conclusions and comments.

1.1 NCCS ENVIRONMENT

Goddard is a major center for NASA's Science
Mission Directorate and is home to the nation's largest
community of Earth scientists and engineers.
Goddard's missions include expansion of knowledge
of the Earth and its environment, the solar system,
and the universe through observations from space.
The Hubble Space Telescope was designed and built

- The authors would like to acknowledge the support of the NASA
Center for Computational Sciences in the development of this
paper, including the use of NCCS systems for benchmark tests.

at Goddard, and it is a design center for Earth-
observing satellites and other spacecraft. Goddard is
also the home of the NCCS_

NCCS is a supercomputing data center that provides
Goddard's science community with HPCs, mass
storage, network infrastructure, software and support
services. About 600 scientists use NCCS systems to
increase their understanding of the Earth and space
through computational modeling and processing of
space-borne observations. NCCS systems are
targeted to the specialized needs of Earth and space
scientists and NASA's exploration initiative. NCCS
performance management was the subject of a 2003
CMG paper [Glassbrook].

1.2 NCCS WORKLOADS

The largest NCCS workloads are mathematical
models of the Earth's atmosphere, oceans and
climate. One important constituent of this workload is
data assimilation, which processes Earth-observing
satellite data and other sparse climate data inputs and
generates complete models of the global climate that
are the best fit of available data.

Examples of other workloads include the following:

• 3D modeling of high energy emission from
rotation-powered pulsars

• 3D simulations of accretion to a star with magnetic
field

• Assimilation of satellite observations of clouds to
improve forecast skill

• Gravity wave simulations
• Global magnetohydrodynamic simulations of the

solar wind in three dimensions

Like most other computational science and
engineering workloads, NCCS Earth and space
science applications represent the physical object of
inquiry as a multidimensional grid and simulate the
behavior of that object by computational manipulation
of the grid. Climate models divide the Earth's
atmosphere into cells and represent the behavior of
wind, precipitation, clouds, heat, chemicals and other
variables within and across cells by numeric
simulation.

The NCCS' largest organizational system user is the
Global Modeling and Assimilation Office (GMAO)
[GMAO]. Currently, GMAO uses the "GEOS-5" code
for its major production assimilation workload. GEOS-
5 maps the Earth's surface using the Cubed Sphere,
which is illustrated in Exhibit 1, below. The Cubed
Sphere mapping avoids problems associated with

more traditional mapping along lines of latitude and
longitude (which suffer from very narrow cells near the
poles that require special treatment). GEOS-5
allocates groups of adjacent atmospheric cells to
hundreds or thousands of processors.

One can divide the GEOS-5 workload into physics
and dynamics [GEOS-5]. Dynamics has to do with
wind and air pressure. As wind and weather systems
move across the Earth's surface, they cross the
boundaries of simulated cells, so there needs to be
communication across cell (and node) boundaries to
reflect this. Physics includes the rest of the simulated
variables and behavior, such as radiation, sea ice,
atmospheric chemistry, moisture and vegetation.
Physics is more local than Dynamics and makes
better use of cache memory.

Exhibit 1 — Cubed Sphere Mapping of the Earth

1.3 CURRENT NCCS SYSTEMS

Currently, the principal computational platform at
NCCS is "Discover," a Linux cluster that includes
hardware manufactured by Linux Networx and IBM.
Discover has 6784 CPUs, including dual- and quad-
core Dempsey, Woodcrest, Harpertown and
Dunnington processors manufactured by Inte13.
Exhibit 2 summarizes the processing resources on
Discover. Other Discover hardware resources include:

•	 Infiniband internal network mesh
• Disk drives from Data Direct Networks and other

vendors
• Tape robots from Sun/StorageTek

3 As of the paper submission date. Discover now includes Intel's
Nehalem processors, as well.

Site Goddard Goddard Goddard Goddard

System Discover - Base

Discover — Scalable
Cluster Unit (SCU)
1&2 Discover - SCU 3&4

Dal — Data
Analysis

CPU Intel 5060 (Dempsey)
Intel 5150
Woodcrest

Intel 5420
(Harpertown)

Intel 7400
Dunnin ton

Clock - GHz 3.2 2.66 2.5 2.0
Release Date May 06 June 06 Nov 07 Sep 08
MB L2
Cache/Core 2 2 3

1.5 MB L2&
4 MB L3

Flops/Clock 2 2
Cores/Socket Dual Dual Quad Quad

Nodes/System 128 512 512
8 (4 Processors
per Node

Total Cores 512 2048 4096 128
Peak TeraFlops
TF Calc 3278 10.8954 4096 1.02

GB Memory/Core 0.6 0.6 2 16
Front Side Bus
MHz 1066 1066 1333 1066
Switch Infiniband Infiniband Infiniband Infiniband
OS SUSE Linux SUSE Linux SUSE Linux SUSE Linux
Scheduler PBS PBS PBS PBS
Message Passing
Interface MPI Scali-MPI Scali-MPI Open MPI 1.2.5 No MPI

Compiler Intel Fortran 10.1.013 Intel Fortran 10.1.013
Intel Fortran
10.1.013

Intel Fortran
10.1.013

Manufacturer LNXI LNXI IBM IBM

Exhibit 2 Table of Discover Processor Components

This paper focuses on Discover's multi-core processor
performance.

2. MULTI-CORE PROCESSOR DESIGN

For the purposes of this paper, we distinguish
between cores, processors and nodes.

Cores = central processing units, including the
logic needed to execute the instruction set,
registers & local cache
Processors = one or more cores on a single chip,
in a single socket, including shared cache and
network and memory access connections
Node = a board with one or more processors and
local memory, network attached

The upper conceptual (not physical) diagram in
Exhibit 3 illustrates these terms.

Shown in the lower diagram are several levels of
cache. Each Discover processor has two or three
levels of cache memory. For example, the
Harpertown quad-core processors have 512 Kbyte
Level 1 (1-1) instruction and data caches local to each
of the 4 cores — each core has exclusive access to L1.
There are also two 6 Mbyte Level 2 (1-2) caches, each
of which are shared by two cores — a total of 12
Mbytes of L2 cache on the processor. The
Dunnington processors — the most recent ones added
to the Discover complex — have a third level of cache
as well, shared by all 4 cores on the processor. The
next level of storage is main memory, 16 Gbytes per
Harpertown node, and all cores and processors on the
node share access to it. Note that each level of cache
or main memory is larger and slower than the
previous one.

The system user and job scheduler (on Discover, the
Portable Batch Scheduler [Spear] from Altair) control

4-c ! ore	 4-c pre	 Local Memory
-++ar-pi4to„r,_. 	 44-P rtown-
Processor	 Processor

I	 I

8-core, 2-socket Node

Cores, Processors and Nodes

2.5 Ghz
Wolfdale
Core 0

2.5 Ghz
Wolfdale
Core 1

2.5 Ghz
Wolfdale
Core 2

2.5 Ghz
Wolfdale
Core 3

512 Kbyte
I,D Cache

512 Kbyte
I,D Cache

512 Kbyte
I,D Cache

512 Kbyte
I,D Cache

6 Mbyte L2 Cache 6 Mbyte L2 Cache

Front Side Bus Interface 	 Front Side Bus Interface

Harpertown Processor

Exhibit 3 — Multi-Core Nodes and Processors

each application's use of one or more cores on the
dual-core Dempsey and Woodcrest or quad-core
Harpertown and Dunnington processors. When only
one core on a processor and node are active, that
core enjoys unencumbered use of all the processor
and node resources, including all levels of cache,
main memory and access paths. When more than
one core is active, they must share these resources
and contention occurs. We examine contention for
the shared cache and main memory (collectively, the
memory subsystem) in this paper.

3. MULTI-CORE BENCHMARK RESULTS

To begin with, we studied the performance of the
memory subsystem with a single core active using
kernel benchmarks.

The results that follow are variable in terms of memory
stride and memory range. Range means the total
memory footprint that the array variable called "cache"
spans and the kernel touches. Stride means the
distance between successive read and write [r+w]
operations. The benchmark moves within the memory
range and by the memory stride at each loop iteration.

"Cache miss latency" results are based on read
operations; "Cache replacement time" results are
based on write operations. R+w operations include
one of each.

Note, some cluster systems, such as those
manufactured by Silicon Graphics, provide direct
access to all memory across the cluster from any
core, processor or node. The Discover cluster, in
contrast, and most current generation Linux clusters,
only provide direct access to memory local to the
node. Communication across nodes on Discover is
handled by message passing using the MPI interface
and the Infiniband internal mesh network. The
simulation of Dynamics in GEOS-5 crosses node
boundaries and uses the MPI interface. MPI also
impacts multi-core performance, but is outside the
scope of this paper.

3.1 MEMORY KERNELS

The memory core synthetic kernels are written in C
and derived from codes published by [Hennessy] and
[Mangegold]. The Hennessy code reads and writes
data by incrementing an array variable, "cache," as
seen in the following fragment. The Mangegold code
functions similarly.

/* inner loop does the actual read and write of memory

for (j=0;j <lim,j+= stride) {
cache[j]++; / r+w one location in memory */

} /* for j */

3.1.1 SINGLE CORE KERNEL RESULTS

Exhibit 4 shows the kernel results using a single
active core on the dual-core Woodcrest processor in
the Scalable Cluster Unit 1&2 partition of Discover_
(The stride length for Exhibits 4 through 7 is 256
bytes.)

Woodcrest Cache Miss Latency

1000

r
0̂
 100d

0
z
0 10
d
J

7	 70	 10	 1000	 1000	 ^Po0	 X000	 000,

	

o	 ^ oo	 .quo000

Memory Range - KBytes

Exhibit 4 — Woodcrest Cache Miss Latency

4

Exhibit 4 can be interpreted as follows. The horizontal
axis represents the range of memory crossed by the
kernel program, from 1 Kbyte up to 10 Gbytes on a
logarithmic scale. The vertical axis represents the
cache miss latency (read time), also on a logarithmic
scale, from 1 ns up to 1 psec. The plot represents the
latency time measured for read operations at a
particular memory range.

Read operations covering a short range show the
lowest latency, consistent with a high hit rate in the
Level 1 cache. There is a distinctive stair-step pattern
to the plot, consistent with latency times that jump up
to a new plateau when the memory range exceeds the
size of a particular level of cache. Cache replacement
[write] time displays similar stair-step patterns.
(Cache write results are omitted in this paper due to
space limits.)

Observations about Exhibit 4 include the following.
The points where latency jumps up correspond to the
sizes of the L1 and L2 caches. The final plateau,
starting at around 3 megabytes, corresponds to the
latency of local main storage. The test does not
extend beyond the capacity of local main storage and
so does not reflect access times to remote storage
(which would have to be accessed using MPI in any
event).

Harpertown Cache Miss Latency

1ao

N
V

0
V
N
O

,DZ

d w
J

,
>	 10	 00	 ^^ og0 v°°OO ^°q' o^O

0	 °°°	 001

Memory Range - KBytes

Exhibit 5 — Harpertown Cache Miss Latency

The format of Exhibit 5 is the same as for Exhibit 4,
but shows the performance of the Harpertown chip.
Comparing Woodcrest (a dual-core chip) to
Harpertown (a quad-core chip with a slightly slower
clock speed), the latency of Harpertown is somewhat
faster than Woodcrest up to about the 2 Megabyte
memory range, at which point the Woodcrest
overflows its L2 cache and degrades to local main
storage latency. When Harpertown overflows its L2

cache at around 6 Megabytes, it reaches a peak
latency of around 30 ns. This performance is more
due to the speed of the off chip main memory than to
Harpertown itself. (The L1 cache stair step is modest
for Harpertown with this test.)

Dunnington Cache Latency

1000

N

0
100

N
O
M	 Dunnington
Z

U	 10
C

_J
J

11010	0 1 00" 7q 0 1	00 1 0 0	 l p °

Memory Range - KBytes

Exhibit 6 — Dunnington Cache Miss Latency

Exhibit 6 shows the same data in the same format for
the Dunnington chip, which is of more recent vintage
than either Woodcrest or Harpertown. Like the other
results, it shows distinctive stair step performance as
the kernel progressively overflows several levels of
processor cache and eventually dips into local main
storage. The extra stair step corresponds to the extra
(1-3) level of cache in Dunnington (see Exhibit 2).

Exhibit 7 is an overlay of the previous three charts.
The larger and faster caches on Harpertown show
that, except for small memory ranges (a few Kbytes),
the newer Harpertown chip is faster than the older
Woodcrest, notwithstanding the slower clock rate.

Cache Miss Latency Comparison

1000

Na0	
100

O	 I	 -Harpertown
l;R	 ^ .

Z	
•Dumington

Woodcrest

T
U iD	 I	 ..

d	 -

J	 I'

1

1	 70	 1	 1	
f0	 100	 ?0	 JO00	 000	 0̂ 	 o0p

00000

0p00

Memory Range - KBytes

Exhibit 7 — Cache Miss Latency Comparison

Because of the transistor current leakage problem
mentioned in the introduction, newer chips don't show
the steady acceleration of clock speeds seen in prior
generations. Improved performance and larger sizes
of cache memory (and in the case of Dunnington, the
newest processor in Discover, an additional level of
cache) reflects the manufacturers' efforts to increase
performance without increasing the clock rate.

The kernel benchmark is designed to eliminate the
performance impact of each processor's execution
units — which the clock rate would tend to emphasize.
The code uses a dummy loop that executes
instructions but does not stride through memory. The
graphs show memory latency times calculated by
subtracting the dummy loop execution time from the
striding execution time. As a result, the kernel is
narrowly focused on the performance of the on-chip
caches and local main storage rather than the
performance of the execution units.

Harpertown - Vary Memory Stride

100

V
C
OU
ui	 Harpertown - 256
O

Z 10
	 ^ Harpertown - 64

^,	 -•- Harpertown 16
U
C	 ^YWy^M^W44d
RJ

1
7	 70	 700 7 000 70000 7000 7,00000700.

O 000

Memory Range - KBytes

Exhibit 8 — Harpertown Cache Miss Latency With
Varying Strides

Exhibit 8 shows additional results using the same
memory kernel benchmark test, but varying the
memory stride (the distance between consecutive
read operations). For a given memory range, larger
memory strides will cross that range faster than runs
with smaller memory strides. The format of Exhibit 8
is the same as for the earlier charts, and all results are
for the Harpertown chip, except that multiple memory
stride distances are shown together.

Cache memories, as well as other storage hardware,
improve computer performance due to the
phenomenon of reference locality, which can be
divided into temporal locality and spatial locality.
Temporal locality occurs when a storage location used
once is likely to be used again soon afterwards, so
that holding the location's contents in fast cache

storage will likely result in a cache hit. Spatial locality
occurs when a storage location used once is likely to
result in the use of a nearby storage location soon
afterwards, so that holding a location and its near
neighbors in fast cache storage will likely result in a
cache hit.

In Exhibit 8, the best performance comes from the test
run with a 16 byte memory stride. Due to spatial
locality, the kernel experiences a very high hit rate
when the code accesses near neighbor locations in
rapid succession. For the 256 bytes stride,
performance is significantly slower, with the
characteristic stair-step pattern seen in the earlier
graphics.

Dunnington -Vary Stride

1000

N
C
O
^ 100

N
O 	 +DUnnirglon128
ZDunnington 64

-r Dunnington 16
a
U	 10

ai

m
J

1
7	 70	 7C,	 COQ 70

0 7^^00
'0^0̂ o o^0aoo

Memory Range - KBytes

Exhibit 9 — Dunnington Cache Miss Latency With
Varying Strides

Exhibit 9 shows results similar to Exhibit 8, but with
the additional cache level stair step on the Dunnington
processor. Note, in the exhibit, the Dunnington 128
and 64 byte stride results are nearly superimposed.

3.1.2 MULTI-CORE KERNEL RESULTS

Exhibit 10 is based on the Hennessy memory kernel
code and is similar to the earlier exhibits, but slices
the data in another way. One can read this Exhibit as
follows. The horizontal axis is the memory stride size_
As before, this axis has a logarithmic scale. The
vertical axis is the read and write time, rather than just
the read (latency) time, measured as before in
nanoseconds; the range is from 0 to 700
nanoseconds and is not logarithmic.

More importantly, however, the graph shows the
difference between 2-core, 4-core and 8-core
performance. For each line, the core count is at the
node level. The 2-core Woodcrest line means 2 cores

700

600

S00

200

100

-S 400v
E

3
300

0.001	 0.01	 0.1	 1	 10	 100	 1000	 10000	 100000

Stride Size in Kbytes

—4 2 active cores (Woodcrest)
	

f-4 active cores (Woodcrest)	 #8 active cores (Harpertown)

Exhibit 10 — Read and Write Time With Varying Strides and 2, 4 or 8 Active Cores

active on the node. Because there are 2 processors
per node, this translates to 1 core active per chip.
The 4-core line translates to 2 cores active per chip
for the same reason, and the 8-core Harpertown line
translates to 4 cores active per chip. (We used the
results we had; all results from the same processor
would have been more convincing but have the same
basic pattern.)

Exhibit 10 demonstrates that these multi-core chips
can experience contention for resources shared at the
processor (chip) level. As the memory stride expands
beyond sizes that ensure very high hit rates in the
local cache, there is contention for shared cache,
communications paths with the node and with main
storage local to the node. So, going from single- to
multi-core chips, in this case results in increased
memory contention and reduced performance. The
natural benchmark tests in the following section also
show this.

Additional observations about Exhibit 10 include the
following.

For small stride sizes, performance is very high for all
core densities due to spatial locality. Performance
degrades as the stride size expands and shows the
same stair-step pattern as in the single-core test
results that vary memory range.

On the right side of the graph, above 100 Kbyte stride
sizes, performance improves dramatically for all core
densities. The authors found that this improvement is
most likely due to hardware prefetch. [Hegde] states,
with respect to the Intel processor architecture, "The
hardware prefetcher operates transparently, without
programmer intervention, to fetch streams of data and
instruction from memory into the unified second-level
cache. The prefetcher is capable of handling multiple
streams in either the forward or backward direction. It
is triggered when successive cache misses occur in
the last-level cache and a stride in the access pattern
is detected, such as in the case of loop iterations that
access array elements."

Aside from the programmer-transparent hardware
prefetcher, the Intel instruction set has explicit user-
and compiler-accessible prefetch instructions and
vector instructions, both of which can avoid some of

the delays accessing the memory subsystem when
there is spatial or temporal locality. Some compilers
allow the application programmer to encourage the
use of such instructions where the optimizer may not
detect them automatically.

All of the above — multi-level cache, hardware
prefetch, vector instructions and compiler
optimizations — are examples of the exploitation of
reference locality to improve system performance.

3.2 CUBED SPHERE BENCHMARK RESULTS

3.2.1 CORE DENSITY CUBED SPHERE RESULTS

This section shows results from running the Cubed
Sphere application code on Harpertown processors
within Discover, varying the number of cores, nodes
and core densities.

Nodes

Cores
Per

Node
Total
Cores

Wall Time
Seconds

3 2 6 1336.9
3 4 12 771.2
6 2 12 676.1
3 6 18 658.8
3 8 24 601.3
6 4 24 411.6
12 2 24 371.1
6 6 36 339.2
6 8 48 318.3
12 4 48 212.8
12 6 72 181.9
12 8 96 178.5

Exhibit 11 — Cubed Sphere Results Varying Core
Counts and Densities - Table

Exhibit 11 can be interpreted as follows.

Each Harpertown node on the Discover cluster
system consists of two processors, plus local main
storage and network connections with the rest of the
system. Each processor chip has four cores,
including L1 caches for data and instructions local to
each core and a larger L2 cache shared by pairs of
cores. With four cores per processor and two
processors per node, there can be up to 8 cores
active on a node during a program run. This core
density and the total number of cores in the test is set
by parameters passed to the job scheduler [Spear]
when the job is submitted.

The first column in Exhibit 11 is the number of nodes
in that run; the second column is the number of cores
active per node; the third column is the total number
of cores in the run and is the product of the first two
columns. The fourth column is the wall-clock time.

Following are some observations about Exhibit 11.

As the total number of cores across all test runs
increase, the wall clock time decreases — performance
improves. Amdahl's Law states that the performance
improvement possible running a program in parallel
depends on the proportion of serial and parallel code
in the program. In this case, the Cubed Sphere is
very parallel, processing similar work for thousands of
similar cells representing the Earth's atmosphere and
oceans, so large performance improvements running
on an increasing number of cores is not surprising.
However, the observed speedup is less than linear -
e.g., going from 12 to 24 processors at 2 cores per
node improves performance from 676.1 down to 411.6
seconds — not nearly twice as fast. Cubed Sphere
has some serial content.

On the other hand, as the core density per node
increases, the wall clock time increases for a given
total core count — performance degrades. For
example, running 24 total cores on 12 nodes with a
density of 2 cores per node results in a wall clock time
of 371.1 seconds. Holding the total core count at 24
but increasing the core density per node to 4 (that is,
2 cores active on each processor) and reducing the
number of nodes to 6 gives a wall clock time of 411.6
seconds. Increasing core density to 8 cores per node
(all that are available) increases the wall clock time to
601.3 seconds.

All of these 24-core test runs had the same problem
size and the same execution unit resources available.
The difference was in the shared resources. Going
from 2 to 4 core density per node meant increased
contention at the chip level — contention for the chip's
access paths to main storage and for the use of main
storage, resulting in approximately a 10% increase in
wall-clock time. Going from 4 to 8 core density means
contention for the shared Level 2 cache as well as
main storage, and results in a 50% wall clock time
increase.

So far, our benchmark results have shown (a) that
increasing core counts increases performance, (b)
that this performance increase is less than linear and
(c) that increasing core density for a fixed core count
decreases performance. The results that follow lead
to some additional conclusions, but as they do not

--I--RTIones (MVAPICH)
t RTIones (MPT)
—d^ Discover (Sc Ii-MPI)

Soo

_ 700
T

a
Y

soo

A
Soo

w

m
d 400

a
300

a
zoo

a
r

100

0

vary the core density, they neither confirm nor deny
conclusion (c).

3.2.2 HIGH CORE COUNT CUBED SPHERE
RESULTS

The format of Exhibit 12 is as follows. The horizontal
axis is the number of cores running the test. The
vertical axis is the wall clock time in seconds. The line
labeled "Linear" represents the theoretical linear
speed-up achievable from a 60-core run extrapolated
to a 480 core run.

The following charts show Cubed Sphere results on
large numbers of processor cores [Putman]. In these
charts, core density is held at the maximum available
on the node — e.g., 8 cores per node for Harpertown
processor nodes on Discover.

Cubed Sphere Benchmark Times

7DD r

60D

saD
a
0
d 4OD	 toieeo^e^
N
'y	 ^tRTJanes w/mPt
E M
^	 fRTJOnes wl

apeich

g 2

1aD

D
60	 90	 120	 240	 480

Number of Cores

Exhibit 12 — Cubed Sphere —
Sub- and Super-Linear Speed-Up

The "Discover" line is for the NCCS' Discover cluster
running on Harpertown processors. The two
"RTJones" lines are for the RTJones cluster
supercomputer located at the NASA Ames Research
Center in California. There are two RTJones lines, as
the test was run using two different versions of the
MPI message passing software.

Observations about Exhibit 12: Discover benchmark
results showed a slightly better than linear speed up in
the range between 60 and 90 cores. Between 90 and
120 cores, there was a close match between the
Discover and theoretical linear speedup; and above
120 cores, the speed up was not a good as the
theoretical linear improvement.

The behavior of the RTJones tests with respect to
speedup was similar to that for Discover in Exhibit 12
— varying from slightly better to slightly worse than
theoretical

0.5-deg 72-level Hydrostatic Cubed-Sphere FV Dycore

0	 100	 200	 300	 400	 500	 600

NPEs

Exhibit 13 — Throughput

9

e
a
u
wt

c
0
5
0
r
wo

0w
a
E

c
0

7
uvxw

1000

10000

100

100000 _^_

10

NH FV Cubed-Sphere Times (6-hr simulation)
—^ c1000 26L (Discover Linux Clustcr)

c 1000 26L (SG] ICE)
^••• LINEAR

9s	 '

eI.
0..........	r!	-	 -	 -

100
	

1000
	

10000

NPEs

Exhibit 14 — Super-Linear Speedup

performance changes as the number of cores
increased. In addition, running two different version of
MPI showed that there was some performance impact
from changing the MPI version. Overall, Discover was
faster than RTJones.

Exhibit 13 also compares Discover with RTJones.
The horizontal axis is the same — the number of cores
(here labeled "NPEs" — the number of processing
elements) working on the problem. However, the
vertical axis is inverted from the prior graph. In Exhibit
13, the vertical axis is Throughput rather than Wall
Clock time — higher up is faster and better.

For all three test runs in Exhibit 13, one can see that
throughput improvements tail off as the number of
cores (NPEs) increases, most noticeably above 200
cores. Up to 100 cores, RTJones is faster,- above
that, Discover is faster. As in Exhibit 12, there is a
slight but noticeable difference between the two MPI
versions running on RTJones. In both Exhibits 12 and
13, the performance line becomes more horizontal as
the core count increases — indicating less additional
performance for more processors.

Note, Exhibits 12 and 13 both show Cubed Sphere
benchmark results, but in Exhibit 13 it is a subset of

the code rather than the whole program. Exhibit 13
shows results running the GEOS-5 Dynamics but not
Physics.

Exhibit 14 also shows Cubed Sphere benchmark
results, but has a different format. The horizontal axis
is logarithmic and shows the number of processor
elements (cores). The vertical axis is execution time,
uses a logarithmic scale and displays the longest time
lowest on the scale. The Exhibit shows more clearly
than the others that for a fixed core density and large
core counts, Cubed Sphere performance improves
better than a theoretical linear extrapolation. A paper
by Shameem Akhter [Akhter] excerpted below
provides an explanation.

4. OTHER MULTI-CORE TEST RESULTS

There is a substantial literature and some controversy
surrounding multi-core processor performance
[Akhter], [Alam], [Chai], [Dongarra], [Levesque],
[Mangegold], [Simon].

Aside	 from	 the	 science	 and	 engineering
supercomputer niche, multi-core processors have
penetrated	 many	 other	 markets,	 including
mainframes, servers, desktops and laptops. Multi-

10

core is the predominant processor architecture in
these markets today. Manufacturers of all these types
of systems have embraced multi-core and these
diverse platforms have experienced the multi-core
memory contention problem.

A sample from this literature is given in the
Bibliography and in the following discussion.

LEVESQUE

In this paper [Levesque], based on analysis of
Opteron processors on Cray cluster systems, the
authors state that "excluding message passing
performance, the primary source of contention when
moving from single core to dual core is memory
bandwidth." Using the NERSC-5 SSP applications,
Levesque found an average performance penalty
moving from single to dual core of 10%; using the
NAS Parallel benchmarks, the penalty ranged
between 10% and 45%.

Levesque proposes a simple model for predicting
multi-core application performance. The model
divides total execution time into time spent on shared
resources (memory bandwidth) and non-shared
resources (everything else). The model predicts that
memory bandwidth time will double going from single
to dual core, and double again going from dual to
quad core. Levesque's own tests show that the
model's predictions are quite accurate. Our results,
e.g. for the 24 core results shown in Exhibit 11, are
consistent with this model as well.

AKHTER

This paper [Akhter] discusses Gustafson's Law, a
variation on Amdahl's Law that eliminates certain
assumptions, such as the assumption that a problem
size is fixed. "Amdahl's Law assumes that as the
number of processor cores increases, the problem
size stays the same. In most cases, this is not valid.
Generally speaking, when given more computing
resources, the problem generally grows to meet the
resources available." As noted in an earlier CMG
paper [Glassbrook], climate models running on NCCS
systems follow this pattern, exploiting increasingly
parallel machines to run at finer resolutions (smaller
cell sizes) and achieving better scientific results
thereby.

Ahkter's discussion of Gustafson's Law touches an
observed characteristic of the Cubed Sphere test,
where high core counts in a certain range show better
than linear performance improvements due to
improved cache utilization. "Amdahl's Law assumes

that the best performing serial algorithm is strictly
limited by the availability of CPU cycles. This may not
be the case. A multi-core processor may implement a
separate cache on each core. Thus, more of the
problem's data set may be stored in cache, reducing
memory latency." Putman's test results (Exhibit 14)
on Discover and RTJones demonstrate this
phenomenon.

5. CONCLUSIONS AND COMMENTS

These NCCS benchmark results, results published
elsewhere, analysis of the NCCS' workload and other
workloads and of the Discover hardware design led to
these conclusions:

• Multi-core processors work both in favor of and
against improved application software
performance. Positive and negative performance
impacts included the following.

Contention for shared resources by multiple cores
on the same processor (which may include the
Level 2 cache, the path to node- and cluster-level
resources, local main storage and off-node
storage) will reduce wall-clock performance
compared to a single core on the same processor
(Exhibit 11).

Spreading a fixed-size workload across multiple
cores may decrease the working-set size for each
workload segment, increase spatial reference
locality, increase cache hit rates, decrease the
need for communication with other cores,
processors or nodes, decrease contention for
shared memory access and so improve wall clock
performance (Exhibit 14 & Exhibits 12 and 13
below 200 cores).

• Increasing the number of cores allocated to a
fixed-size workload that can run in parallel will
decrease the amount of local computation needed
and so improve performance (Exhibit 14 &
Exhibits 12 and 13 below 200 cores.

For the Cubed Sphere, the improvements due to
smaller working sets and decreased local
computation can be overcome by other factors.
The authors believe that the tail-offs seen in
Exhibits 12 and 13 above 200 cores are due to
increase contention for the MPI message passing
resource across nodes. Eventually, the
increasing cost of MPI communications across
increasing core counts (e.g., as simulated weather
crosses node boundaries) overcomes the

11

decreasing cost of local computation and higher
cache hit rates.

The GEOS-5 Cubed Sphere climate data
assimilation code is highly susceptible to parallel
execution, as the treatment of different areas of
the Earth's surface, oceans and atmosphere is
quite similar. GEOS-5 is an excellent example of
an application that can make good use of a highly
parallel Linux cluster HPC system.

It's not sufficient to simply run an application on
more cores to achieve better performance. Users
should examine their codes and consider
restructuring them to increase locality, increase
intra-node communications, use MPI functionality
to promote spatial locality, use compiler
optimizations and make other multi-core aware
changes. Insight into multi-core specifically and
processor and cluster design generally can help
application performance. Microprocessor designs
such as Intel's and AMD's have different
application performance implications.

Where run times are the critical constraint and
processor utilization is less critical, running single-
core density can help performance. The
scheduler can support single-core runs.

Quad-core+ multi-socket nodes will likely
exacerbate the bandwidth contention issue both to
main memory and on-chip over the middle term.
Many applications will experience significant
negative multi-core processor performance
impacts unless optimized to account for them.
Processor designers are responding to this
problem.

BIBLIOGRAPHY

[Akhter] Akhter, Shameem and Roberts, Jason.
"Multi-Core Programming — Increasing Performance
Through Software Multi-threading." Intel Press, April
2006.

[Alam] Alam, S.R., Barrett, R.F., Kuehn, J.A., Roth,
P.C., and Vetter, J.S. "Characterization of Scientific
Workloads on Systems with Multi-Core Processors."
IEEE International Symposium on Workload
Characterization. Oct. 2006, San Jose, CA; 225-236.

[Chaff] Chai, L., Gao, Q., and Panda, D.K.
"Understanding the Impact of Multi-Core Architecture
in Cluster Computing: A Case Study with Intel Dual-
Core System." International Symposium on Cluster

Computing and the Grid, 2007, Rio de Janeiro, Brazil,
2007.

[Dongarra] Dongarra, J., Gannon, D., Fox, G, and
Kenned, K.	 "The Impact of Multicore on
Computational Science Software,"	 CTWatch
Quarterly, 2007.

[Glassbrook] Glassbrook, Richard and McGalliard,
James. "Performance Management at an Earth
Science Supercomputer Center." CMG 2003.

[GEOS-5] gmao.gsfc.nasa.gov/systems/geos5

[GMAO] gmao.gsfc.nasa.gov

[Hennessy] Hennessy, J. and Patterson, D.
Computer Architecture: A Quantitative Approach, 2"d
Edition. Morgan Kauffmann, San Mateo, California.

[Hegde] Hegde, Ravi. "Optimizing Application
Performance on IntelO Core TM Microarchitecture
Using Hardware-Implemented Prefetchers," software.
intel.com .

[Levesque] Levesque, J., Larkin, J., Foster, M.,
Glenski, J., Geissler, G., Whalen, S., Waldecker, B.,
Carter, J., Skinner, D., He, H., Wasserman, H., Shalf,
J., Shan, H., and Strohmaier, E. "Understanding and
Mitigating Multicore Performance Issues on the AMD
Opteron Architecture" (March 7, 2007) Lawrence
Berkeley National Laboratory. Paper LBNL-62500.

[Mangegold] Mangegold, Stefan, Boncz, Peter, and
Kersten, Martin. "Optimizing Main Memory Join on
Modern Hardware," Technical Report INS-R9912,
CWI (Centre for Mathematics and Computer Science).
Amsterdam, 1999.

[Moore] http://en.wikipedia.org/wiki/Moore%27s—law

[Putman] Putman, William M. "The Finite-Volume
Dynamical Core on the Cubed-Sphere" Poster.
NASA-NOAA-Florida State University, 2007, and
email correspondence.

[Simon] Simon, Tyler , Cable, Sam—' Mahmoodi,
Mahin. "Application Scalability and Performance on
Multicore Architectures," HPCMP Users Group
Conference, IEEE Computer Society, 2007.

[Spear] Spear, Carrie and McGalliard, James. "A
Queue Simulation Tool for a High Performance
Scientific Computing Center." CMG 2007.

12

